Hot-or-Not Elixir
with José Valim

SOURCE OF YOUR TECHNOLOGY

[] = Author Paul Zendenl = [] = = = = [] = [] = = = = [] =

|>

with {:0k, :"José Valim’} <-
¢ o creator of elixir()
| > elixir @& o

hot_or_not(
end

Timetable

18:00h Introduction
18:05h Elixir (José Valim)
19:30h Break

20:00n Demonstrator &
Elixir in real practice (Sioux team) '

20:45h Q&A
21:00h Drinks

#End of Program

U

\\Hll

/,;? \\\\\\\\\\\\\\\\\\

Sioux 2017 3

The Free Lunch Is Over
A fundamental turn towards concurrency

/ Next gen CPU - no longer faster!
L o00000 Dual-Core Itanium 2 o /
Intel CPU Trenc15 LT
(sources: Intel, Wikipedia, K. Olukotun) " .
10000 New performance drivers:
. - Hyperthreading
- Cache Welcgme to
oo - Multi-Core the hmpe
The free cloud-core
lunch is
100 SO over
hetero-core
multi-
" single-threaded free lunch core
. . ST G | oo mmme TTTITTT :
=]l |1 |||
0 — 1975 2005 2011 2022

1970 1975 1980 1985 1990 1995 2000 2005 2010
Exit Moore
https://herbsutter.com/welcome-to-the-jungle/
http://www.gotw.ca/publications/concurrency-ddj.htm

Sioux 2017 4

https://herbsutter.com/welcome-to-the-jungle/
http://www.gotw.ca/publications/concurrency-ddj.htm

Software expectations double every year! &

> Embrace concurrency (to exploit new hw)
> More, complex features

» Always available

» Scalable

» Responsive

» DevOps

» Zero downtime deployment

) ...

Sioux 2017 -

José Valim will explain how Qcan help us ...

Founder and Lead Developer at Plataformatec.

: A

R >

Creator of Elixir
rli

... to cope with these challenges.

Sioux 2017 7

elixir

@elixirlang / elixir-lang.org

4 Thread Safety

The work done to make Rails thread-safe is rolling out in Rails 2.2. Dey
Infrastructure, this means you can handle more requests with fewer cop
leading to better server performance and higher utilization of multiple ¢

To enable multithreaded dispatching in production mode of your applic
in your config/environments/production. rb;

£ 0 config.threadsafe!
-

Rails 2.2
= More information : thfeadSafe

= Thread safety for your Rails
= Thread safety project announcemen
= Q/A: What Thread-safe Rails Means

Functional
programming

- Explicit instead of implicit state
. Transformation instead of mutation

Browser

L Server ®

\Endpoint

ey ol faceboolk

ERICSSON

\

Zz @ mororoLa

Hheroku % riq k

http://stackoverflow.com/questions/1636455/where—1s—

erlang—-used—-and-why

http://stackoverflow.com/questions/1636455/where-is-erlang-used-and-why
http://stackoverflow.com/questions/1636455/where-is-erlang-used-and-why

2 million connections
on a single node

http://blog.whatsapp.com/index.php/
2012/01/1-million—-1s-s0-2011/

http://blog.whatsapp.com/index.php/2012/01/1-million-is-so-2011/
http://blog.whatsapp.com/index.php/2012/01/1-million-is-so-2011/
file://localhost/Users/jose/Desktop/erlang-logo.svg

Intel Xeon (CPU X5675 @ 3.07GHz
24 (PU - 96GB
Using 40% of (CPU and Memory

file://localhost/Users/jose/Desktop/erlang-logo.svg

. Functional

. Concurrent
e Distributed

N
elixir

Sequential

code

Sequential
code

Observer Demo

Applications

Introspection & Monitoring
Visibility of the application state
Fasy to break into ‘components’
Reasoning when things go wrong

- Processes

- Supervisors

- Applications

- Message passing

- Concurrent

. Fail fast

- Fault tolerant
. Distributed?

- Compatibility
- Extensibility
- Productivity

elixir

Compatibility

Extensibility

Now we need to go meta. We should now
think of a language design as being a
pattern for language designs. A tool for
makRing more tools of the same Rind.

Guy Steele - “Growing a language”
at ACM OOPSLA 1998

defmodule MathTest do
use ExUnit.Case

test "basic operations” do
assert 1 + 1 ==
end
end

~/0SS/elixir[master *¥]$ elixir lib/ex_unit/examples/difference.exs

1) test strings (Difference)
lib/ex_unit/examples/difference.exs:10
Assertion with == failed
code: stringl == string2
left: "hello world "
right: "hello world!"
stacktrace:
lib/ex_unit/examples/difference.exs:13: (test)

2) test keyword lists; reverse order (Difference)
lib/ex_unit/examples/difference.exs:16
Assertion with == failed
code: keywordl == keyword?2
left: [port: 4000, max_connections: 1000]
right: [max_connections: 1000, port: 4000]
stacktrace:

lib/ex_unit/examples/difference.exs:19: (test)

Finished in 0.03 seconds (0.03s on load, 0.00s on tests)
2 tests, 2 failures

from p 1n Post,
where: p.published_at < now ana
p.author == “José”,
order: p.created_at

Productivity

- First-class documentation
. Tooling (ExUnit, IEx, Mix)
- Hex packages

Elixir

v1.2.0-dev Kernel <f>

w/

Q. search Provides the default macros and functions Elixir imports

into your environment.

FAGIE These macros and functions can be skipped or cherry-

MODULES picked via the import macro. For instance, if you want to

EXCEPTIONS tell Elixir not to import the if macro, you can do:

PROTOCOLS

HIDPTLLWVNW
import Kernel, except: [if: 2]
Integer

Kernel

Summary Elixir also has special forms that are always imported and
Functions cannot be skipped. These are described in

Macros
Kernel.SpecialForms .

Kernel.ParallelCompiler _ _ _)
Some of the functions described in this module are
Kernel.ParallelRequire o o . , '
inlined by the Elixir compiler into their Erlang
Kernel.SpecialForms .)
counterparts in the :erlang module. Those functions are
Kernel.Typespec o _ '
< v called BIFs (builtin internal functions) in Erlang-land and
Cywor oy e - . .
) they exhibit interesting properties, as some of them are
ist , :
v allowed in guards and others are used for compiler
acro . :
optimizations.
Macro.Env

~/05S/phoenix[master]$ iex
Erlang/0TP 18 [erts-7.1] [source] [64-bit] [smp:4:4] [async-threads:1¢] [hipe] [kernel-poll:false]

Interactive Elixir (1.2.0-dev) - press Ctrl+C to exit (type h() ENTER for help)
iex(1)> h Kernel

- Keme

Provides the default macros and functions Elixir imports into your environment.

These macros and functions can be skipped or cherry- picked via the import
macro. For instance, i1f you want to tell Elixir not to import the if macro, you
can do:

| import Kernel, except: [if: 2]

Elixir also has special forms that are always imported and cannot be skipped.
These are described in Kernel.SpecialForms.

Some of the functions described in this module are inlined by the Elixir
compiler into their Erlang counterparts in the :erlang module. Those functions
are called BIFs (builtin internal functions) in Erlang-land and they exhibit
interesting properties, as some of them are allowed in guards and others are
used for compiler optimizations.

Most of the inlined functions can be seen in effect when capturing the
function:

| iex> &Kernel.is_atom/1
| &:erlang.is_atom/1

Those functions will be explicitly marked in their docs as "inlined by the
compiler”,

iex(2)> i

tlixir Tooling Integration Into Emacs

What Does Alchemist Do For You?

Alchemist brings vou all the

Alchemist comes with a bunch of features, which are:

- A
= 4

-;;\!
w
Pk

AN
P 4

A

s 4

-.—_;\‘

Elixir tooling and power inside your Emacs editor.

Compile & Execution
Inline code evaluation
Mix integration
Documentation lookup
Code definition lookup
Smart code completion

Powerful |[EX integration

Packages Documentation «

2ng ecosystem

e
‘

-

Using with Elixir

Simply specily your Mix dependencies as lwo-ilem Luples like {zecto, "~> 0.1.0%} and Elixir will ask il you wanl
loinstall Hex il you haven'l zlready. Afller inslalled, you canrun $mix local lo seeall available Hex Lasks and

$ mix help TASK for more informalion aboul 2 specific Lask.

Using with Erlang

Download rebar3, putit inyour PATH and give it exeoutable permissions. Now you can specify Hex
dependencies in yaur rehar.config like {deps, [hackneyl}.

2813 13188 ‘n'a 64898 ‘m'a 1136627 ‘m'a 51728251
[ckage . download - download: - dawnloads
@ e [D fereions m y'gs..:crdays m ar;tv;‘ca-,': m all time

available versions

hex.pm

Demo time!

INSTALL GETTING STARTED

Elixir

l n n
Elixir is a dynamic, functional language designed for building scalable
and maintainable applications.

3

def ins pect(), do: Elixir leverages the Erlang VM, known for running low-latency,

def inspect(true), do: distributed and fault-tolerant systems, while also being successfully used

def inspect(nil),

T in web development and the embedded software domain.
def inspect(:""),

To learn more about Elixir, check our getting started guide. Or keep

def inspect(atom) dc

reading to get an overview of the platform, language and tools.

Platform features

Scalability

All Elixir code runs inside lightweight threads of execution (called processes) that are isolated and

exchange information via messages:

LEARNING DOCS BLOG PACKAGES

News: Elixir v1.0 released

« #elixir-lang on freenode IRC

» elixir-talk mailing list (questions)

» elixir-core mailing list (development)
» Issue tracker

* @elixirlang on Twitter

* Source Code
» Wiki with events, resources and talks

organized by the community

~ 1 - N . 1
Crach Frotiree for Frilano deavelanare

elixir-lang.org

G
ranuners

ll)‘l

. THE LITTLE
Metaprogramming
s ma@b
Write Less Code,
Gcet More Donc GUIDEBOOK

(and Have Fun!)

Bl
grammers

o |
Eear 6

Functional

|> Concurrent
|> Pragmatic
|> Fun

tli

Introc.iuc
B1X1r

CETTING STARTFD IN FUNCTIONAL PROGRAMAING

Dave Thomas

Foreword by
José Valim,
Creator of Elixir

edited by Lynn Beighley

| BT Simon St.Laurent & J.David Eisenberg

Built and designed at

p\otqformotec

sulting and software engin

Elixir coaching

%

p\otoformotec

sulting and software engin

Elixir design review

(ustom development

elixir

@elixirlang / elixir-lang.org

Hot-or-Not Elixir
with José Valim

SOURCE OF YOUR TECHNOLOGY

- . , - .- B - - Y’
A : ‘. ~
. 3 3
g y 4 Tl - 3 MERAEALABLEELEETEAestetB iRt RRL N LR T -
o m— oy 98, IR A o S - re——

| e
' s e - kd ‘ N
T 2 . L

J \
v . >
R I \ 'y
‘. : r.‘ & ”-\;I" e
posopr - W ‘. o L +
' e 4 e o e "
0 Bl ! :‘\Qig‘ AT
A N e 7
- S R A
B Wit "3
Chorrs >

. ‘ - < e 3 A' 1‘ _;_'.:
= = Author: Paul Zenden: = = = = = = = =« = = =

S : -’ @%)Ior Sorter
Elixir in practice Y r
s obot) Robot 1:

Goals:

« Learn Elixir

« Apply Elixir in
embedded system
Concurrent behavior
Distributed application
« Complex control

Test support
Documentation
(Failure recovery)

Down Y. Lift

Sensor _
Gripper. ﬁomf Team:
lvlo » « Koen Rutten

« Jochem Berndsen
* Han van Venrool
 Philippe Dirkse

« Paul Zenden

Sioux 2017 2

Functions

Robot:
% - Connect with Belt controller
- Pick up block

- Drop off block

- Move lift up/down

- Rotate arm left/right

§ - Safety zone handling

- Notify belt when block
picked/dropped

d.
Lo

TN

— e —— o ————— g —— Ty oy T T T -y T T -
s se® mhm~~ B s e ——

' e e e M -
Belt: | .

- - Move belt to next position =

- ldentify color

- Keep track of blocks on belt
Notify robots to pick/drop block

o~

Sioux 2017

Safety Layer — Limited Rotations

) 7 4 s

Distributed Distributed
communication about communication about r\
- which robot may enter . which robot may enter * ' s> Allowed
the safety zone. - the safety zone. K rotation

Sioux 2017 4

Demo first —Tehni

calities next
P e s P iy

i 8

lllll

B wrretewe

System levels

Robot & Belt Application Logic
[EIixirAppIicationJ Robot & Belt Main Functions

Lego Device Handling: Derived from: https://github.com/jfcloutier/ev3/

% Nerves Project

Platforms: cross compiled linux, boot directly to Erlang VM

Frameworks: Networks, 1/O, ev3dey, ...
[Nerves J

— Tooling: Cross compilation tools for specific target

300 MHz ARM926EJ-S

64 MB DRAM /16 MB Flash
MicroSD

Linux Kernel 4.4 — ev3dev patches
GPIO, 12C, SPI — ev3dev drivers
Ethernet/Wifi: USB dongle

[Lego Mindstorm
Brick

s] o

Sioux 2017 6

https://github.com/jfcloutier/ev3/

Supervisor Worker

Belt: Application Architecture

[ElixirHoNEvﬂ All communication message based.

(application)
L L ks | |

v _ 3 x Robot |7j_

Belt ClaimCoordinator| |ClaimCoordinator

Supervisor (left_centre) (centre_right) .
/ \ i L Lo Claim

4 m--ememeeee—eeo-oo--—--dt--}---»| Obtainer

A

: o . Belt) BeltState S

EBeltDewceWorke} { Hal } { Control } o[e —] :

Do |

|

|

’1 4 A
async / ! s
L Eri--1---->[Robot]
Task / | Control
e S Distributed :
I

xecute request

[

Sioux 2017

Supervisor Worker

Robot: Application Architecture

(application)

Robot I I

Supervisor | |

1 = |

e |

- : I B e N [

: o) Robot) Robot Claim -~ i 1 |ClaimCoordinator I
{?obotDewceWorke} { o } { Control } { State] [Obtainer]‘ 7 (centre_right) I
- \ / |

| I

1

|

1

|

All communication message based.
[EIixirHoNEv?J

ClaimCoordinator

()

A L Y x

async 7 1 o .
, I
4 1

I
I
I
I
,/ ___E_E___'___’ Belt
Task ’ N Control
execute requests I o
I

Protocols

HoneDevices.BeltDeviceBehaviour
er pid :: pid, client pid :: pid) :: any
- pid :: pid, client pid :: pid, positions :: Integer)

jer pid :: pid, client pid :: pid, positions :: Integer) :: any

/er pid :: pid)
rer pid :: pid) :: &

/ Defines client API

[_]““ [} Compiler checks whether all functions are provided by BeltDeviceWorker
BeltDeviceWorkere----- Hal -

.
\“ e A - Hal will accept a notification message, but not explicitly defined (as above).
[— J Task sends notification message directly. Could be improved @
(e

xecute requests

l senServer.cast(client pid, {: , belt state.worker pid, notification})
L

Devices

Sioux 2017 - 10 -

def determine device role()

Some Code

Starting application, belt and robot specific children {:0k, my_hostname} = :inet.gethostname

my hostname = to string(my hostname)
my role = roles[String.to atom(my hostname)]

device role = DeviceConfiguration.determine device role()

my role

roles = Application.get env(:elixirHoN ev3, :roles)

children =
device workers(device role)

config :elixirHoN ev3, :roles,
"nerves-4bl6e":
"nerves-5370":
"nerves-5783":
"nerves-66ab" :

41=] L

opts = [strategy: :one for one, name: ElixirHoNEv3.Supervisor]
supervisor.start link(children, opts)

K
-
[

Lad %]
e o L

-
'

{
{:
{:
{

defp device workers({:belt})
[worker(HoneDevices.BeltDeviceWorker, []),
supervisor(Hone.Belt.Supervisor, [:"Belt Control"]),
worker(Hone.Robot.ClaimCoordinator
worker(Hone.Robot.ClaimCoordinator

, [:left centre, {:global, :left centre coordinator}], [id: :left centre coordinator]),
, [:centre right, {:global, :centre right coordinator}], [i1d: :centre right coordinator])

defp device workers({:robot, id})
[worker(HoneDevices.RobotDeviceWorker, [id]),
supervisor(Hone.Robot.Supervisor, [translate position(id), {:global, :belt}, :"Robot

nspect(translate position(id))} Control®

e OIVUA UL/ R A

Note: still message
exchange between

SO me CO d € Messages: Synchronous & Asynchronous processes. [

“Direct call”

Synchronous Messages: GenServer.call()
- to be handled by handle_call()

1dle calli{: } = command,

color, belt state} = BeltDeviceTasks.get c

: , color, belt state}

Asynchronous Messages:. GenServer.cast()
- to be handled by handle_cast()

Async call

'Error, call cannot be done in initialised state."

I10.puts "Asking delegate to initialize.

state.delegate.initialize(state.delegate, self())

, state}

lll S'OUX 2017 u 13 »

Some Code Robotinitalization sequence

Belt : Robot
Belt.Control Robot.Control Robot.Hal RobotDeviceWorker (async) Task

sinitialise

sinitialize

-.cast(s, :initialise) state) do <Create task>
_ B RobotDeviceTasks.

Hal.initialis 97 ™

)) t(command, robot state) do
{:noreply, st

obot state.worker name}: received as o ETIE inspe

; {task function, args} = task

def handle_cast({:ok, , :movement done}, state) do N _ ___ .
t initialis s client pid, notification) do

robot state.worker pid,

state.status != :busy && state.status != :uninitialised do
_ raise "Error, call cannot be done in idle state."
jer.info "

gister

1A all
. _'.I LS g

Sioux 2017 = 14 -

Some code - Pattern matching

Sioux 2017 - 16 -

SO me COd @ Beltstate

lefp move left! (state)
new blocks = map(state.blocks,

%{state | blocks: new blocks}

e?(state)

L?(state.blocks, fr

) safe pos?(state, block, pos)
config = state.config

safe pos = config.safe min <=

assigned to = Map.

assigned to do
< config.picks.left | s < config.picks. < config.picks.right
< config.picks[robot]

& !beyond assignment

Sioux 2017 = 18 -

Testing

execute requests

Belt
Control

Wrapper

Tested by

e

st "moving to the right moves the blocks", %{state: state}

, state} = BeltState.with block!(state, :red)
state = BeltState.move! (state)
] tState.colour at(state,

ssert :red == BeltState.colour at(state,

rt nil == Bel

.5ensor)

.sensor-1)

state = BeltState.move! (state)

assert nil == BeltState.colour at(state, .5ensor)
assert nil == BeltState.colour at(state, .sensor-1)

ssert :red == BeltState.colour at(state, .sensor-2)

st "empty belt can safely be moved", %{state: state}
asser eltState.move safe?(state)

state = BeltState.move! (state)

rt BeltState.move safe?(state)

r
£

test "unassigned blocks cannot move beyond first pickup position”,

{ , state} = BeltState.with block!(state, :red)

o

eltState.move safe?(state)
BeltState.move! (state)

i
=+
o
=t
m
|

[wn]

eltState.move safe?(state)
BeltState.move! (state)

wn
=+
o
=t
m
|

ert !|BeltState.move safe?(state)

Sioux 2017

Ilgl

Documentation

HoneDevic

'"The

elixirHoN ev3 . .
s HoneDevices.BeltDeviceTasks

The individual tasks the belt device can perform

MODULES

Summary

Functions
check_stop_button(belt_state)
Check whether the stop button is pressed. If so, send a message to the client

get_color(belt_state)

Read the current value of the color sensor

init(belt_state)

Initialise at start of the worker

initialize(belt_state, client_pid)

Initialize all devices; moves the belt to home position

move_left(belt_state, client_pid, positions)

H
H
H
H
H
H
H
H
H
H
H
H
H

Move the belt positions to the left (from the color sensor away)

move_right(belt_state, client_pid, positions)

Move the belt positions to the right (towards the color sensor)

Functions

check_stop_button(belt_state)

Check whether the stop button is pressed. If so, send a message to the client.

Development, build & deployment
= Linux only (due to cross-compilation) if using nerves

= Nerves toolchain, commands: powerful
= Mix compile, mix firmware, mix firmware.burn
= Buildroot linux kernel configuration
= Busybox user space commands

= Documentation somewhat scattered

= Searching, trial & error, active slack channel, github example code

= Possible to upload firmware via network (but did not try it)

= https://github.com/nerves-project/nerves firmware http

= https://github.com/nerves-project/nerves firmware

Sioux 2017 21

https://github.com/nerves-project/nerves_firmware_http
https://github.com/nerves-project/nerves_firmware

Our Experiences - Benefits

= Easy to pick up
= REPL (read-evaluate-print loop), Elixir toolset (mix)
= Syntax
= High fun factor (powerful)
= Focus on essence, less on technical detalls
= Provides a "fighting chance" to develop a proper distributed, fault-tolerant

system
= Need to develop/learn best practices/patterns

= Vibrant community: tooling, libraries and frameworks abound
= nerves, mix, Phoenix, Ecto, ...
= Erlang libraries

= Erlang VM/OTP: Great!

Sioux 2017 23

Our Experiences - Concerns

= No mandatory type system,; critical for any non-trivial project
= Defining types and type specifications is optional (Need guidelines, best practices)
= Dialyzer might provide sufficient support
= Not clear whether more complex type specifications are supported

= Decomposition design of components (supervisors, workers), including protocol
(messages) is important

= IDE support
= Partly inherent for dynamic languages
= Different level of support for different kind of general editors (emacs, atom, IntelliJ, Sublime, ...)

= Performance not sure; did no measurements
= Calculation intensive might be slow.
= |oT, distributed systems probably OK.
= Can call C/C++ functions if needed

Sioux 2017 = 24 -

Our Experiences - Conclusion
= Great learning experience & fun

= Elixir/Erlang looks interesting, especially distributed systems, but you still
have to think about:
= Difficult aspects like fault-tolerance, network stability, security, etc.
= Decomposition and interface protocol design:
= messages should result in atomic actions

= Would we apply it in a new project?
= Depends highly on the nature of project.

Sioux 2017 25

Active development — vibrant community

= Many interesting new applications and developments
= Auto-connecting devices, machine learning, game back-end, web services, drones, ...
= Search for ElixirConf EU 2017, ElixirDaze 2017, Lambda Days 2017, more ...

= Look at:

= https://elixir-lang.org/

= https://elixirforum.com/

= http://elixir.community/

= https://www.erlang-solutions.com/

http://nerves-project.orqg/
http://www.phoenixframework.org/
= https://hex.pm/

Sioux 2017 27

https://elixir-lang.org/
https://elixirforum.com/
http://elixir.community/
https://www.erlang-solutions.com/
http://nerves-project.org/
http://www.phoenixframework.org/
https://hex.pm/

Elixir - Hot-or-Not?

Sioux 2017 - 28 -

=
Bl
LL]
| -
O
(-
‘O
g
@)
-IU
-]
o
>
4
-
qv)
L
_I

Sioux 2017 = 29 -

More Hot-or-Not, more Sioux

Q3 2017 > Hot-or-Not “Accelerating Intelligence”

Q4 2017 > Hot-or-Not The Next Generation (workshop)

Go to www.sioux.eu for more information.

Sioux 2017 30

http://www.sioux.eu/

Sioux 2017 - 32 -

Source of
your technology

Sioux 2017

	Hot-or-Not Intro Elixir.pdf
	Elixir.pdf
	Hot-or-Not Elixir Demonstrator.pdf

